Multiplicity and concentration of semi-classical solutions to nonlinear Dirac equations

نویسندگان

  • Yanheng Ding
  • Zhaoli Liu
  • Juncheng Wei
  • Paul H. Rabinowitz
چکیده

−i~α · ∇w + aβw +M(x)w = f(x, |w|)w for x ∈ R3, where M(x) denotes the scaler field V (x) or V (x)β, and f describes the self-interaction which is either subcritical: W (x)|w|p−2, or critical: W1(x)|w| +W2(x)|w|, with p ∈ (2, 3). We prove multiplicity results with the number of solutions obtained depending on the ratio of minV and lim inf |x|→∞ V (x), as well as maxW and lim sup|x|→∞W (x) for the subcritical case and maxWj and lim sup|x|→∞Wj(x), j = 1, 2, for the critical case. We show also certain concentration phenomenon of the families of semi-classical ground states at saddle points of M(x) = V (x)β.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...

متن کامل

Existence and Concentration of Semiclassical Solutions for Dirac Equations with Critical Nonlinearities

We study the semi-classical ground states of the Dirac equation with critical nonlinearity: −i~α · ∇w + aβw + V (x)w = W (x) ( g(|w|) + |w| ) w for x ∈ R3. The Dirac operator is unbounded from below and above so the associate energy functional is strongly indefinite. We develop an argument to establish the existence of least energy solutions for ~ small. We also describe the concentration pheno...

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

Symmetry and reduction of nonlinear Dirac equations

We present results of symmetry classification of the nonlinear Dirac equations with respect to the conformal group C(1, 3) and its principal subgroups. Next we briefly consider the problem of classical and non-classical symmetry reduction and construction of exact solutions for the nonlinear Poincaré-invariant Dirac equations. In particular, a class of exact solutions is constructed which can n...

متن کامل

Existence and concentration of semi-classical solutions for a nonlinear Maxwell-Dirac system

We study the semi-classical ground states of the nonlinear MaxwellDirac system with critical/subcritical nonlinearities:    α · (i~∇+ q(x)A(x))w − aβw − ωw − q(x)φ(x)w = f(x, |w|)w −∆φ = q(x) |w| −∆Ak = q(x)(αkw) · w̄ k = 1, 2, 3 for x ∈ R, where A = (A1, A2, A3) is the magnetic field, φ is the electron field, q is the changing pointwise charge distribution. We develop a variational argumen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017